THE JOINT LAMINAR CONVECTION OF A BINARY MIXTURE
NEAR A VERTICAL SURFACE

P, M. Brdlik and V. I. Dubovik

Joint (free and forced) convection near a vertical surface is studied. The one-dimensional
heat and mass transfer of a binary mixture is described by a system of differential equations
for the boundary layer taking into account diffusion thermal conductivity. The approach to
solving the problem varies in accordance with the nature of the basic flow.

NOTATION
X, ¥ — coordinates R; —the gas constant
g — gravitational acceleration ¢p ~ specific heat
T —the temperature A —coefficient of thermal conduc-
v —kinematic viscosity tivity
BT, BM — coefficients of thermal and Jwes fwh —blow-in parameters
concentration expansion G —the Grashof number
a —thermal diffusivity R —the Reynolds number
M —the molecular weight N —the Nusselt number
h — coefficient of mass release Np —the mass-exchange Nusselt
D —thediffusion coefficient number
" aq —thermal diffusion constant P —the Prandtl number

S —the Schmidt number
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The subscript w denotes values on the surface, the subscript = denotes values af a great distance
from the surface, the subscript 1 indicates the blown-in gas, and the subscript 2 indicates air.

Experimental investigation of mass exchange in a two-component boundary layer at a vertical surface
[1] in a forced flow indicates the effect of free convection on the heat and mass release processes.

In the general case the mass diffusion flow of the i-th component in a gas mixture depends on the
gradients of the concentration and temperature:

. ’ am; m,(1—m) a7 0.1)
h=—W[@+%—7f—ﬂ&%2

The first term in (0.1) describes the mass diffusion, the second, the thermal diffusion. The concentra-
tions of the components of the mixture are connected with the density of the mixture as follows:

my =pilp,mg +my =1
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N . b The heat flow in binary mixtures includes heat transferred by ther-
8 mal conductivity and diffusion:

\ 7 ar RMT
\&2 7=—h (WJH o g 0-2)

The second term here defines the diffusion transport of energy
4 4 g 4 {diffusion thermal conductivity}.

tical porous plate in a stream with velocity U, and temperature T .
# / N Gas of a different nature is blown into the boundary layer through the

\ porous surface of the plate.

When there is joint convection,the one~dimensional heat, mass, and
\ momentum transport are described by the laminar-boundary-layer equa-
V4 tions

/XZ a We consider the convective motion of a binary mixture near a ver~

%,
Fig. 1 W v S =y S gBr (T — T+ g (s — moac) (0.3)

du ,

i & Cpy ™ Cpy
Z = (g) — BB (0.5)

¢ t o ..
A v +U—3T =T oy () {0.6)

with the boundary conditions

=0, v=0vy, T =Ty m =My for y =0
{0.7)

u::UoostToc: My = My for Y - 00
We assume that Ty > To (for Ty, < T, the discussion is no different). The coordinate system is
chosen so that the x axis is directed along the surface in the upwards direction while the y axis is perpen-
dicular to it.

In constructing Egs. (0.3)~(0.6) the physical properties of the medium were taken as constant with the
exception of terms expressing the lift, in which the density depends on the temperature and the concentra-
tion. In this case we neglect energy dissipation and thermal diffusion, i.e., the second term in (0.1).

1. The Effect of a Forced Flow on Free Convection. As the basic flow we take free convection, and
we study the effect on it of a forced flow. To do this we iniroduce the stream function ¥, so that

= o ik
’ i

’ T T8z

satisfy Egs. (0.4); we also introduce new dependent and independent similarity variables

e T O (1)
and then instead of (0.3)-(0.6) we obtain the system
W 3 ) — 2% +0() +epn) =0 (1.2)
0" (n) +3Pf(n) +a9" M)IO"(n) +3¢Sf(n) ¢ (m) =0 (1.3)
(M) +3Sf(m) o (p) =0
Bin — -7y A T
W=r=r, *O=g—" (1.4)
a = ‘C}L:;&E (10 — M) ? , Cy == Eic,imm
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with the following boundary conditions in the new variables:

N N f’ =0, fiﬂ = const, 0 =1, q)=1 for M =0
10 \\( ~ ) f* ='"RG7" 6 =0, =0 for N>
/

No The non-self-similar boundary condition at infinity for f* does
/\\ ) not have a significant effect on the solution. Thus, Fig. 1 gives a com~
2 .

(1.6)

parison of the velocity (a) and temperature (b) profiles for the sim-
plest case of joint convection with P =0.72 and B =0.1 when there is no
mass exchange or porous input of matter at the wall with the solution
Fig. 2 of Szewczyk [2](curve 1) obtained for this case by a different method —
expansion in a series in the parameter R/Gi/ 2,

/ The primes in Egs. (1.2)-(1.4) denote differentiation with re-
spectto 7. The parameter B =R/2G1/ % defines the effect of the forced

@ p flow on free convection. The velocity components u, v are given by
)

ﬂ.iﬂ

the equations

\ 2
A\ / u = 4vei® & f* (), v =vee™h [nf' () — 3f ()] L7

X\ _ The boundary condition fy, =const implies that

8 {/ NS Vp == — 3'VC]_$—1/2 fw, O Uy ~ 3:_!/2.‘

As shown in [3, 4], the behavior of vy, for free and forced convec-
A tion has a comparatively weak effect on the boundary layer and the heat
exchange.

To solve the nonlinear differential equations (1.2)-(1.4) with the

Fig. 3 boundary conditions (1.6) we use the following iteration process:

1) we choose the zero-order approximation for the functions
S and 0 ();

2) we substitute the zero-order approximation of f(")(n) in the coefficient of Eq. (1.4) and solve the
boundary-value problem. We find the zero-order approximation for ¢(n);

3) substituting the zero-order approximations for the functions f(1), 6(n), ¢(n) and their derivatives
in Eqs. (L2), (L.3), we obtain £ (), 6) (). Then from (1.4) we find ¢((m), ete.

The above process continues until the difference between two successive approximations for the un-
known functions is less than a predefined constant € >0 for all 7. The linear boundary-value problems
ocurring at each iteration are solved by the screw-die method [5]. The quantity a is calculated from Eqgs.
(2-44) —(2-50) of [6] for Ty, =328°K. From computations on an M-220 computer it is possible to calculate
the temperature and velocity profiles and the distribution of the component 1 in the boundary layer for joint
convection when hydrogen, helium, water vapor, and carbon dioxide are blow in.

The local heat-exchange coefficient is calculated from the equation

G\ [ o p apRaM*Ty (Mg —my) J
= (T) {e O+ 5 T imih To=T, ¢ © (1.8)

For the mass flow of component 1 (ignoring thermal diffusion), from Eq. (0.1) we find the mass-ex~
change Nusselt number :

¥p=— (&) ¢ © (L.9)
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Figure 2 gives the ratio of the heat flows when helium is blown in and the temperature conditions are
defined by the ratio Ty, /T , =1.1. We see that diffusion thermal conductivity has a significant effect on the
heat exchange. When small amounts of gas are blown in,the intensity of heat exchange increases; the curves
have a maximum. Inthe case of free convection, when we take account of diffusion thermal conductivity, the
maximum occurs when the blow-in parameter is

/4Ry (M,G) = 0.015

(continuous curve 1), while when we ignore diffusion thermal conductivity, the maximum occurs when the
blow-in parameter is

.R, (4,6~ = 0.076
(dotted curve).

For a blow-in parameter of 0.05thedifference between the values of q/q, calculated with and without
diffusion thermal conductivity is 60%. When large volumes of gas are blown in, as a result of which the
boundary layer thickens, the heat exchange decreases,and if we take diffusion thermal conductivity into
account, g becomes less than ¢, (the value in the absence of blow in). Inthe case when the diffusion effect
is ignored, q becomes equal to gy when the blow-in parameter is 0.41.

Curves 2 in Fig. 2 were obtaihed by taking into account the effect of the forced flow on free convec-
tion (B=2). In this case, when the blow-in parameter is 0.1,the ratio q /q, decreases, due to the effect of
forced convection,when diffusion thermal conductivity is taken into account, by 14% and, when diffusion
thermal conductivity is ignored, by up to 20%.

2. The Effect of Free Convection on Forced Convection. To discuss the effect of free convection on
forced convection, we reduce Eqgs. (0.3)-(0.6) to ordinary differential equations by introducing the indepen-
dent variable

N =y (U / va)*s

and the stream function
¥ = (Uovz)” f (n)

In the new variables the velocity components are expressed as follows:

w=Uuf (1), v=—+ (U%’V)%” () — /" (] (2.1)
and instead of (0.3)-(0.6) we obtain
17 00) + Y f () F () -+ (8 (1) + 20 ()] 45 = O (2.2)
87 () + [ P f(n) + ag’ ()10 () — YyeS f () @’ (n) =0 (2.3)
@M+ Sfm) ¢ (n) =0 (2.4)

where 9(n), ¢' (1), a, ¢, and e are determined by (1.5).

We can make the transformation to ordinary differential equations under the condition that A =G/R? =
const. This holds exactly if Ty, —T,, = Cx%, n=const. However, in our case, i.e., when Ty T & = const, to
solve Egs. (2.2)-(2.4) we use the method of "frozen" coefficients. A test of this method for the simplest
model of a joint convection (in the absence of porous input and mass exchange) gave (Fig. 3) satisfactory
agreement with Szewczyk's solution [2], in which the parameter G/ R? is absent from the equation of motion.

The second equation of (2.1) yields an equation for the blow-in (draw—off) parameter:
20 215
= — ZuyYR
fuv=— 7"V

The parameter A in the transformed equations (2.2)~(2.4) is independent of 7. When this parameter
is zero,the equation becomes the equation for forced convection; for large A free convection has an effect
on forced flow and heat exchange.
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The boundary conditions {0.7) for the system (2.2)~(2.4) in the new
variables for the case of flows which coincide in direction are

=0 f,=const, 6=1,¢=1 for =0

f’=1,9=0, (p=0f01‘ 1 —> o0 (2'5)

when there is joint convection.

When the free and forced convections arein opposite directions,we
have f'(w»}=—1 for n— » in the boundary conditions (2.5).

Equations (2.2)-(2.4) were solved by the method described in § 1
for free and forced convection in the same and opposite directions.

\ From the numerical results it is possible to obtain heat and mass
\ \ flows at a vertical surface when gases of different natures are blown in
; N fwb! for various values of G/R?.
! ot 4 We find the heat flow of a binary mixture from (0.2), from which we
Fig. 4 obtain
X p apRMT  (my,, —my b
! ;{:Z&/z N=—R" [6' )+ 5 ZpMn’llz (;w——T;)) .4 (O)j (2.6)
I—
§l e The mass-exchange Nusselt number in this case is Np=—R!2 ¢' (0).
/-“ —-—1 For a clearer understanding of the physics of the process under
= < consideration we introduce Fig. 4, in which we have constructed curves
3 for N/N, as a function of the intensity of the blow in (N; is the value of
= J N when there is no mass exchange at the surface) for various gases and
-~ — for A =0.10. The graphs show that lighter gases are more effective in
S \%r >4 lowering the heat exchange than heavy gases in purely forced flow (con-
TS, < tinous curves). As the effect of free convection increases, the curves
S~ JE ~L_ b (dotted) 1ie above the continuous ones, i.e., heat exchange increases in
Y Bt proportion to the reduction in the molecular weight of the gas blown in.
7 4z a4 Due to the effect of free convection the ratioc N/N; increases by 3% for
Fig. 5 carbon dioxide and for helium by 70% when the blow-in parameter is

0.1. The effect of diffusion thermal conductivity when helium is blown
in and there is joint convection is shown in Fig. 5 for values of A=0, 0.1, 1, and 10, the dotted curves
giving N/RY? when the diffusion effect is ignored.

When helium is blown in, free convection can be ignored up to G/R2=0.09 for Swp="0.02.
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