
THE JOINT LAMINAR CONVECTION OF A 

NEAR A VERTICAL SURFACE 

P. M. Brdlik and V. I. Dubovik 

BINARY MIXTURE 

Joint (free and forced) convection near  a ver t ica l  surface is studied. The one-dimensional  
heat and mass  t r ans f e r  of a binary mixture is descr ibed by a sys tem of differential equations 
for  the boundary l ayer  taking into account diffusion thermal  conductivity. The approach to 
solving the problem var ies  in accordance with the nature of the basic  flow. 

x, y - coordinates 
g - gravitat ional  accelerat ion 
T - the t empera tu re  

- kinematic v i scos i ty  
fiT, fi M - coefficients of the rmal  and 

concentrat ion expansion 
a - t he rma l  diffusivity 
M - the molecular  weight 

h - coefficient of mass  re lease  
D ~ t h e  diffusion coefficient 

a T - thermal  diffusion constant 

NOTATION 

P~ 
Cp 
X 

/WC, fwb  
G 
R 
N 

N D 

P 
S 

- - t h e  gas constant 
- specific heat 
-coef f ic ien t  of thermal  conduc- 

t ivity 
- blow-in p a r a m e t e r s  
- the Grashof  number  
- the Reynolds number  
- the Nusselt  number  
- t h e  mass-exchange  Nusselt  

number  
- the Prandt l  number  
- t h e  Schmidt number  

i ( G ~-V, g3T (Tw -- Too) x8 Uoox vwz 
] w c = - T  n ~ \ - X ' l  , G =  ~ , R =  , n ~ -  'V 'y 

ax hr. v ~q = v 
~v = - Z ,  N D =  "-~' P = - ? '  

The subscr ipt  w denotes values on the surface,  the subscript  oo denotes values at a great  distance 
f rom the surface,  the subscript  1 indicates the blown-in gas, and the subscript  2 indicates air. 

Experimental  investigation of mass  exchange in a two-component  boundary layer  at a ver t ica l  surface 
[1] in a forced flow indicates the effect of free convection on the heat and mass re lease  p rocesses .  

In the general  case the mass  diffusion flow of the i - th  component in a gas mixture depends on the 

gradients  of the concentrat ion and t empera tu re :  

[0m~ ~( ' --~)  or ] (0.1) 
h = - -  pD L Oy § aT T ~ i=1. 2 

The f i rs t  t e r m  in (0.1) descr ibes  the mass  diffusion, the second, the thermal  diffusion. The concent ra-  
t ions of the components of the mixture are  connected with the density of the mixture as follows: 

mi = P i / P ,  ml ~-m2 = 1  
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Fig .  1 

The heat flow in binary mixtures includes heat transferred by ther- 
mal conductivity and diffusion: 

( OT ) , RiMer (0.2) 

The second term here defines the diffusion transport of energy 
(diffusion thermal conductivity). 

We consider the convective motion of a binary mixture near a ver- 
tical porous plate in a stream with velocity U~o and temperature Too. 
Gas of a different nature is blown into the boundary layer through the 
porous surface of the plate. 

When there is joint convection,the one-dimensional heat, mass, and 
momentum transport are described by the laminar-boundary-layer equa- 
Lions 

Ou Ou O~u 
U ~ + V ~ -~- ~ "O~ "~" g~T (T - -  Too) + g~3.~ (mi - -  mioo) (0.3) 

Ou O~) 
~ 0  

~T OT OT i 0 epl -- o~ ]I O~f 
u ~ + v-~y ---- pep av (q) p% . 

~Om~ + v Om~ = ~ 0 

(0 .4 )  

(0 .5 )  

( o . 6 )  

wi th  the  b o u n d a r y  cond i t i ons  

u = 0 ,  v =v~,, T ---- T~, m i =mi,~ for y = 0  
u ~- Uoo, T---- Too, ml = m l ~  for g - ~ c ~  (0.7) 

W e  a s s u m e  tha t  T w > T ~  ( for  T w < Too t h e  d i s c u s s i o n  i s  no  d i f f e r en t ) .  The  c o o r d i n a t e  s y s t e m  i s  
c h o s e n  so  t ha t  t h e  x a x i s  i s  d i r e c t e d  a long  the  s u r f a c e  in  t h e  u p w a r d s  d i r e c t i o n  w h i l e  t h e  y a x i s  i s  p e r p e n -  
d i c u l a r  to  it .  

In c o n s t r u c t i n g  Eqs .  (0 .3)-(0 .6)  t h e  p h y s i c a l  p r o p e r t i e s  of t he  m e d i u m  w e r e  t a k e n  a s  constar~t wi th  t h e  
e x c e p t i o n  of  t e r m s  e x p r e s s i n g  the  l i f t ,  in wh ich  the  d e n s i t y  de pe nds  on the  t e m p e r a t u r e  and the  c o n c e n t r a -  
t ion .  In t h i s  c a s e  w e  n e g l e c t  e n e r g y  d i s s i p a t i o n  and t h e r m a l  d i f fus ion ,  i . e . ,  t he  s e c o n d  t e r m  in (0.1). 

1. The  Ef fec t  of  a F o r c e d  F low on F r e e  Convec t ion .  A s  the  b a s i c  f low we  t a k e  f r e e  convect ion ,  and 
w e  s tudy  the  e f fec t  on i t  o f  a f o r c e d  f low. T o  do t h i s  we  i n t r o d u c e  the  s t r e a m  func t ion  ~ ,  so t h ~  

~----- O'--'~'j ~ Y 0x 

s a t i s f y  Eqs .  (0.4); w e  a l s o  i n t r o d u c e  new dependen t  and  i n d e p e n d e n t  s i m i l a r i t y  v a r i a b l e s  

' i  = ~ ' a  ' W = 4 v c ~ x ' / , [  O1),  c l  = - -  (I.i) 

and then  i n s t e a d  of  (0 .3)-(0 .6)  we  ob ta in  t h e  s y s t e m  

/ ' "  (,]) § 3/( , l)  fl" ('1) - -  2f~(q) + 0 (n) + e ~ (~) = 0 

O" (~l) + [3P] Ol) + a(~' 031 0' (n) + 3cS1 (q) ~ '  (n) = 0 

~" (n) + 381  (n) ~" (n) = o 
T -- Too mi -- talc ~ 

0 (n) = T~ - -  Too' 9 (n) ~1~ - ~1oo 
p 

a = cpl - %~ (m~ .  - r a ~ )  ~ - ,  c~, = ~ c,,~mi~ Cp 
i 

(i.2) 

(i.3) 

(i.4) 
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Fig. 3 

e - -  

aTRIM"Tv~ (mlw --  mloo) P 
c : cpM1M~ (T~ --  Too) S 

~m (mlw --  rnloo) M2 / M1 - -  t 
~T (T w __Too) , ~m : i + ( M 2 ] M I - - t ) m l w  

(1.5) 

with the following boundary conditions in the new var iab les :  

/ '  = 0 ,  f .  =const ,  0 = t ,  q~ = l  for 7 = 0  
1" = 1/2RG-'1' , 0 ----- 0, (p = 0 for I1 --~ oo 

(1.6) 

The n o n - s e l f - s i m i l a r  boundary condition at infinity for  f '  does 
not have a significant effect  on the solution. Thus,  Fig. 1 gives a com-  
pa r i son  of the ve loc i ty  (a) and t e m p e r a t u r e  (b) p ro f i l e s  for  the s i m -  
p les t  case  of joint convection with P =0.72 and B =0.1 when t he r e  is no 
m a s s  exchange or  porous  input of m a t t e r  at the wall  with the solution 
of Szewczyk [2](curve 1) obtained for  th is  case  by a different  method - 
expansion in a s e r i e s  in the p a r a m e t e r  R/Gi/2.  

The p r i m e s  in Eqs. (1.2)-(1.4) denote different ia t ion with r e -  
spec t to  ~/. The p a r a m e t e r  B =R/2G i/2 defines the effect  of the forced 
flow on f ree  convection. The  ve loc i ty  components  u, v a re  given by 
the equations 

u = 4vc2 xV, f (.q), v = vclx-V, [7/ '  (~1) - -  31 (~1)1 (1.7) 

The botmdary condition f w  =cons t  impl ies  that  

Vw -= - -  3~clx-'1" f . ,  or y., ~ x- 'h . '  

As shown in [3, 4], the behav io r  of v w for  f ree  and forced convec-  
t ion has  a compara t ive ly  weak effect  on the boundary l a y e r  and the heat 
exchange. 

To solve the nonl inear  different ia l  equations (1.2)-(1.4) with the 
boundary conditions (1.6) we use  the following i te ra t ion  p roce s s :  

1) we choose the z e r o - o r d e r  approximat ion  for  the functions 

f (7)  and 0 (7); 

2) we subst i tute  the z e r o - o r d e r  approximat ion  of f(~ in the coeff icient  of Eq. (1.4) and solve the 
boundary-value p rob lem.  We find the z e r o - o r d e r  approximat ion  for  ~0(7); 

3) subst i tut ing the z e r o - o r d e r  approx imat ions  for  the functions f ( 7 ) ,  .0 (7), ~0(7) and the i r  de r iva t ives  
in Eqs.  (1.2), (1.3), we obtain f ( i ) (7 ) ,  0(1) (~). Then f r o m  (1.4) we find ~(1)(7), etc. 

The  above p r o c e s s  continues until the di f ference between two success ive  approximat ions  for  the tin- 
known functions is  l e s s  than a predef ined constant ~ > 0 for  all  7 .  The l inear  boundary-value p r o b l e m s  
ocur r ing  at each i tera t ion are  solved by the s c r e w - d i e  method [5]. The quantity a T is calculated f rom Eqs.  
(2 -44) - (2-50)  of [6] for  T w =328~ F r o m  computat ions on an M-220 compute r  it is  poss ib le  to calculate 
the  t e m p e r a t u r e  and ve loc i ty  p ro f i l e s  and the dis tr ibut ion of the component  1 in the boundary l aye r  for  joint 
convection when hydrogen, hel ium, wa t e r  vapor ,  and carbon dioxide a r e  blow in. 

The  local  heat-exchange coefficient  is  calculated f r o m  the equation 

N =  --  (G)  I ~1, O' 2c ~ - ~  P aTlt1M~Tw (mlw(Tw_T~)- mloo) q)' (0)] (1.8) 

F o r  the m a s s  flow of component  1 (ignoring t h e r m a l  diffusion), f r o m  Eq. (0.1) we find the m a s s - e x -  

change Nussel t  n u m b e r  : 

tG ~'h , ~ '  = - ~ T )  r (o) (1 .9 )  
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Figure  2 gives  the ra t io  of the heat  flows when hel ium is blown in and the t e m p e r a t u r e  condJitions a re  
defined by the ra t io  T w / T  ~ = 1.1. We see  that  diffusion t h e r m a l  conductivity has  a significant effect  on the 
heat  exchange. When smal l  amounts  of  gas  a re  blown in,the in tensi ty  of  heat exchange i n c r e a s e s ;  the cu rves  
have a maximum.  In the case  of f r ee  convection, when we take account of diffusion t h e r m a l  conductivity, the 
m a x i m u m  occur s  when the blow-in  p a r a m e t e r  is 

l l sR, ,  (linG)-'/,---- 0.015 

(continuous curve  1), while when we ignore  diffusion t h e r m a l  conductivity, the m a x i m u m  occur s  when the 
blow-in  p a r a m e t e r  is  

1/3Rio (1/4G)-'/, ---~ 0.076 

(dotted curve).  

F o r  a b low-in  p a r a m e t e r  of 0.05 thed i f fe rence  between the values  of q/q0 calculated with and without 
diffusion t h e r m a l  conductivity is  60%. When l a rge  vo lumes  of gas  a re  blown in, as a resu l t  of which the 
boundary  l a y e r  th ickens ,  the heat  exchange dec reases ,  and if  we take diffusion t h e r m a l  conductivity into 
account,  q becomes  l e s s  than q0 (the value in the absence  of blow in). In the case  when the diffusion effect  
i s  ignored,  q bec om es  equal to q0 when the blow-in p a r a m e t e r  is  0.41. 

Curves  2 in Fig. 2 w e r e  obtained by taking into account the effect  of the fo rced  flow on f ree  convec-  
t ion (B=2).  In th is  case,  when the blow-in  p a r a m e t e r  is  0.1,the ra t io  q/q0 d e c r e a s e s ,  due to the effect  of 
fo rced  convection, when diffusion t h e r m a l  conductivity is  taken into account, by 14% and, when diffusion 
t h e r m a l  conductivity i s  ignored,  by up to 20%. 

2. The Effect  of F r e e  Convection on Forced  Convection. To d i scuss  the effect  of f r ee  convection on 
forced  convection, we reduce  Eqs, (0.3)-(0.6) to o rd ina ry  di f ferent ia l  equations by introducing the indepen-  
dent va r i ab le  

~1 = Y (U~o I vx)':, 

and the s t r e a m  function 

v = (u~x)'/, / (n) 

In the new variables the velocity components are expressed as follows: 

u =  U~J ' (n ) ,  v = - y [/(n) -~]/ '01)] (2.1) 

and ins tead of (0.3)-(0.6) we obtain 

/"  (n) + I/2 / (n)/" (n) + [0 (n) + e~ (n)] ~ = (2.2) 0 

0" (~) + [1/2 p f 01) + a(p' (q)] 0' 01) - -  1/2 cS f (~1) q~' (~]) = 0 (2.3) 

~" Ol) + ~/2 S f (~) q~' (~) = 0 (2.4) 

whe re  0(~/), q: (~/), a ,  e, and e a re  de te rmined  by (1.5). 

We can make the t r a n s f o r m a t i o n  to o rd inary  d i f ferent ia l  equations under the condition that  A = G/R 2 = 
const.  Th is  holds exact ly  if  Tw-Tr  = Cx n, n=cons t .  However ,  in our case ,  i .e . ,  when T w - T  oo = const,  to 
solve Eqs. (2.2)-(2.4) we use  the method of " f rozen"  coeff ic ients .  A t e s t  of this  method for  the s imples t  
model  of a joint convection (in the absence  of porous  input and m a s s  exchange) gave (Fig. 3) sa t i s f ac to ry  
a g r e e m e n t  with Szewczyk ' s  solution [2], in which the p a r a m e t e r  G / R  2 is absent  f rom the equation of motion. 

The  second equation of (2.1) yie lds  an equation for  the blow-in "(draw-off) p a r a m e t e r :  

The parameter A in the transformed equations (2.2)-(2.4) is independent of U. When this parameter 
is zero,the equation becomes the equation for forced convection; for large A free convection has an effect 
on forced flow and heat exchange. 
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The boundary conditions (0.7) for  the s y s t e m  (2.2)-(2.4) in the new 
va r i ab l e s  for  the case  of f lows which coincide in d i rec t ion a r e  

1' = 0 ,  f ~ = c o n s t ,  0 =  1, q~ = I for ~1 = 0  
(2.5) 

l '  = l, 0----0, ~ ---- 0 for ~l -'~e~ 

when t he r e  is  joint convection. 

When the  f r ee  and forced  convect ions  a r e i n  opposite d i rec t ions ,we 
have f ' ( ~ )  = - 1  fo r  ~--~ ~o in the boundary conditions (2.5). 

Equations (2.2)-(2.4) w e r e  solved by the method desc r ibed  in w 1 
for  f r ee  and forced  convection in the s a m e  and opposite d i rec t ions .  

F r o m  the n u m e r i c a l  r e su l t s  i t  is  poss ib le  to obtain heat and m a s s  
flows at a v e r t i c a l  sur face  when gases  of different  na tu res  a r e  blown in 
fo r  va r ious  va lues  of G/R 2. 

We find the heat flow of a b inary  mix ture  f r o m  (0.2), f r o m  which we 
obtain 

J 

_.<.I_%-7 

o o.z 

Fig. 5 

P aTR1M~Tw (mlw --  m1~) i (2.6) 
N = - - B  '/~ 0'(0)+ S c~Mv'~12 (Tw__Tc~) ~'(0) 

The  mass -exchange  Nussel t  n u m b e r  in this  case  is  N D = - R  1 2 ~,  (0). 

F o r  a c l e a r e r  unders tanding of the phys ics  of  the  p r o c e s s  under  
cons idera t ion  we introduce Fig. 4, in which we have cons t ruc ted  curves  
for  N/N 0 as a function of the intensi ty  of the blow in (N o is  the value of 
N when t he r e  is  no m a s s  exchange at the surface)  for  va r ious  gases  and 
for  A =0.10. The graphs  show that  l ighter  gases  a r e  more  effect ive in 
lowering the heat exchange than heavy gases  in pure ly  forced  flow (con- 
t inous curves) .  As  the effect  of f r ee  convection inc reases ,  the cu rves  
(dotted) l ie above the continuous ones,  i .e . ,  heat exchange i n c r e a s e s  in 
p ropor t ion  to  the reduct ion in the mo lecu l a r  weight of the gas  blown in. 
Due to the effect  of  f r ee  convection the ra t io  N/N 0 i n c r e a s e s  by  3% for  
carbon dioxide and fo r  he l ium by 70% when the b low-in  p a r a m e t e r  is 
0.1. The effect  of diffusion t h e r m a l  conductivity when hel ium is  blown 

in "and t h e r e  is  joint  convection i s  shown in Fig. 5 fo r  va lues  of A =0, 0.1, 1, and 10, the dotted curves  
giving N / R  1/2 when the diffusion effect  is  ignored.  

When hel ium is  blown in, f r ee  convection can be ignored up to G/R 2 =0.09 for  f w b  = - 0.02. 
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